If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+8k+2=0
a = 3; b = 8; c = +2;
Δ = b2-4ac
Δ = 82-4·3·2
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{10}}{2*3}=\frac{-8-2\sqrt{10}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{10}}{2*3}=\frac{-8+2\sqrt{10}}{6} $
| 2^2z=2^3 | | 18f=-26 | | b/8+44=40 | | 3x/2=195 | | 6(5-1m)=10 | | -(x-3)+5=3(x-1) | | 81x^2+99x+28=0 | | 3x+5+9x-3=x | | 5b(6+b)-3=82 | | 3x^2=195 | | 11x=-5-6x | | 12v+10v+14=40 | | -17-x/2;x=3 | | u^2-14u+45=0 | | y/3+8=10 | | 2x/3-3×/4+5×/2=-29/12 | | 1/2x-3=6+2x | | 1/8x^2+20x-800=0 | | -39-(31)=x/12 | | 52=3(4x+9)+5x | | 20=x7 | | 8x-8=8x-2 | | 5(7a+2)=255 | | 2.3=4.4-0.7x | | -8(1+7b)=216 | | -0.5=2.5n-1.5n-4.1 | | g/3-3=1 | | 4x=11x6 | | x+x^2=195 | | 9x^+9=7x^+27 | | -42n-22=-484 | | 7(x+2)+3=30 |